analyze

Analyze Pixelsrc files and extract corpus metrics.

Usage

pxl analyze [OPTIONS] [FILES]...

Arguments

ArgumentDescription
[FILES]...Files to analyze

Options

OptionDescription
--dir <DIR>Directory to scan for .jsonl/.pxl files
-r, --recursiveInclude subdirectories when scanning a directory
--format <FORMAT>Output format: text or json (default: text)
-o, --output <OUTPUT>Write output to file instead of stdout

Description

The analyze command extracts statistics and metrics from Pixelsrc files:

  • Total file, sprite, and palette counts
  • Dimension distributions
  • Color usage patterns
  • Token frequency analysis
  • Animation statistics

This is useful for understanding a corpus of sprites, training data analysis, or project auditing.

Examples

Analyze single file

# Analyze one file
pxl analyze sprite.pxl

Analyze directory

# Analyze all files in a directory
pxl analyze --dir assets/sprites

# Include subdirectories
pxl analyze --dir assets --recursive

JSON output

# Get machine-readable output
pxl analyze --dir sprites --format json

# Save to file
pxl analyze --dir sprites --format json -o metrics.json

Analyze multiple files

# Analyze specific files
pxl analyze player.pxl enemy.pxl items.pxl

# Use glob patterns
pxl analyze *.pxl

Sample Output

Text format:

Corpus Analysis
===============

Files:        24
Sprites:      156
Palettes:     12
Animations:   28

Dimensions:
  8x8:        42 (26.9%)
  16x16:      89 (57.1%)
  32x32:      18 (11.5%)
  Other:       7 (4.5%)

Colors:
  Average per sprite: 6.2
  Most common:
    black     (156 sprites)
    white     (142 sprites)
    skin      (98 sprites)

Tokens:
  Unique:     47
  Most used:  _ (transparent), black, white

JSON format:

{
  "files": 24,
  "sprites": 156,
  "palettes": 12,
  "animations": 28,
  "dimensions": {
    "8x8": 42,
    "16x16": 89,
    "32x32": 18,
    "other": 7
  },
  "colors": {
    "average_per_sprite": 6.2,
    "most_common": ["black", "white", "skin"]
  }
}

Use Cases

  • Corpus analysis: Understand patterns in sprite collections
  • Training data audit: Verify AI training data quality
  • Project metrics: Track sprite counts and dimensions
  • Documentation: Generate statistics for project READMEs

See Also

  • explain - Detailed explanation of single file
  • validate - Check files for errors
  • diff - Compare two files